Difference between revisions of "High Level Functions"

From LIBISIS
Jump to navigation Jump to search
Line 3: Line 3:
 
These functions are
 
These functions are
 
<pre>>>wwout = deriv1x(ww)
 
<pre>>>wwout = deriv1x(ww)
 +
>> wwout = deriv2x(ww)
 +
>> wwout = deriv1y(ww)
 +
>> wwout = deriv2y(ww)
 +
>> wout = deriv1(w)
 +
>> wout = deriv2(w)
 +
>> wwout = integrate_x(ww, xmin, xmax)
 +
>> wwout = integrate_y(ww, ymin, ymax)
 +
>> wwout = integrate_xy(ww, xmin, xmax, ymin, ymax)
 +
>> wout = integrate(w, xmin, xmax)
 +
>> wwout = smooth(ww)
 +
>> wwout = smooth(w)
 +
>> wwout = interp_x(ww, xarray, optional inputs)
 +
>> wwout = interp_y(ww, yarray, optional inputs)
 +
>> wout = interp(ww, xarray, optional inputs)
 +
>> wwout = unspike(ww)
 +
>> wwout = unspike(w)
 +
>> [wwout fitdata] = fit(ww, func, pin, optional)
 +
>> [wout fitdata] = fit(w, func, pin, optional)
 +
>> wwout = func_eval(ww, func, args)
 +
>> wout = func_eval(w, func, args)</pre>
 +
 +
  
  

Revision as of 10:26, 18 March 2008

Many powerful high level functions are provided. These manipulate datasets in a complicated manor.

These functions are

>>wwout = deriv1x(ww)
>> wwout = deriv2x(ww)
>> wwout = deriv1y(ww)
>> wwout = deriv2y(ww)
>> wout = deriv1(w)
>> wout = deriv2(w)
>> wwout = integrate_x(ww, xmin, xmax)
>> wwout = integrate_y(ww, ymin, ymax)
>> wwout = integrate_xy(ww, xmin, xmax, ymin, ymax)
>> wout = integrate(w, xmin, xmax)
>> wwout = smooth(ww)
>> wwout = smooth(w)
>> wwout = interp_x(ww, xarray, optional inputs)
>> wwout = interp_y(ww, yarray, optional inputs)
>> wout = interp(ww, xarray, optional inputs)
>> wwout = unspike(ww)
>> wwout = unspike(w)
>> [wwout fitdata] = fit(ww, func, pin, optional)
>> [wout fitdata] = fit(w, func, pin, optional)
>> wwout = func_eval(ww, func, args)
>> wout = func_eval(w, func, args)



Derrivative Functions

These functions take the derivatives of datasets.

Integral Functions

Smooth Functions

Interpolate Functions

Unspike Functions

Fitting Functions

Function Evaluation